Persistent Bioper!

BOSC 2003
Hilmar Lapp

Genomics Institute
Of The Novartis Research Foundation
San Diego, USA

Bio* contributors and core developers

= Aaron, Ewan, ThomasD, Matthew, Mark, Elia, ChrisM,
BradC, Jeff Chang, Toshiaki Katayama

= And many others
Sponsors of Biohackathons
= Apple (Singapore 2003)
= O’Reilly (Tucson 2002)
= Electric Genetics (Cape Town 2002)

GNF for its generous support of OSS development

Use cases

BioSQL Schema

Bioperl-DB

= Key features and design goals
= Examples

Status & Plans
Summary

k Use cases ()

‘Local GenBank with random access’
= Local cache or replication of public databanks
= Indexed random access, easy retrieval

= Preserves annotation (features, dbxrefs,...), possibly
even format

‘GenBank in relational format’
= Normalized schema, predictably populated
= Allows arbitrary queries

= Allows tables to be added to support my
data/question/...

Use Cases (Il

‘Integrate GenBank, Swiss-Prot, LocusLink, ...’
= Unifying relational schema

= Provide common (abstracted) view on different
sources of annotated genes

‘Database for my lab sequences and my annotation’
= Store FASTA-formatted sequences

= Add, update, modify, remove various types of
annotation

Persistent storage for my favorite Bio* toolkit
= Relational model accommodates object model

= Persistence APl with transparent insert, update,
delete

Normalized relational schema
designed for Bio* interoperability

BioSQL

Toolkit-specific persistence API

Bioperl-DB

Interoperable relational data store for Bio*

= Language bindings presently for Bioperl, Biojava,
Biopython, Bioruby

Very flexible, normalized, ontology-driven schema

= Focal entities are Bioentry, Segfeature, Term (and
Dbxref)

Schema instantiation scripts for different RDBMSs

= MySQL, PostgreSQL, Oracle

Release of v1.0 imminent

= Schema has been stable for the last 3 months

= Relatively well documented (installation, how-to, ERD)
Mailing list (biosgl-l@open-bio.org), CVS (biosql-
schema), links at http://obda.open-bio.org

Ewan Birney started BioSQL and Bioperl-db in Nov
2001

= |nitial use-case was to serialize/de-serialize Bio::Seq
objects to/from a local sequence store (as a
replacement for SRS)

Schema redesigned at the 2002 Biohackathons in
Tucson and Cape Town

= Series of incremental changes later in 2002

Full review at the 2003 Biohackathon in Singapore
= Changed Taxon model to follow NCBI’s

Full ontology model, resembles GO’s model
Features can have dbxrefs

Consistent naming

BIESQIL ERID

— -
FE Term Relatonship kd
Val B Subject Term Id {FK)
R *|Seqleature Cualifier Value . o)
: Term kd [Fl-c.'ljmI o i Object Term Id (FK)
ki Rank k¥ Ontology Id (FK)
+ + ——~L " Value
Seqleaturs 7
ki Seqleature ld I
ki Bioantry ki tFIﬁ: .
| ¥ Lype Torm id Qualiipe Value
b Source Term Id (FK) | Bioaniny % e
i Display Name -5
M Pank B Bioentry Id (FK) .
7 q B Term ld (FK) =, .
T T TVl EE Term Id (FK)
il Rank kb Dhxraf 1d (FK)
3 Rk
o |

K] A

 Np——

~lcomment -

it Commant kd I Bicantry Relationship |d
i Object Bioaniry ld (FK)

FH Bloeniry Id (FK) ki sct Bloentry kd (FK)

: Text Hmld{ﬂﬁ}

FH Rank be Fank

% =
| Bloentry Dhorel

b Blogntry Id (FK)
% Alphabet
E Version
B Length
T Seq

|

Object-Relational Mapping connects two worlds
= Object model (Bioperl) <= Relational model (Biosqgl)

= Object and relational models are orthogonal (though
‘correlated’)

E.g., inheritance, n:n associations, navigability of
associations, joins

General goals of the OR mapping are
= Bi-directional map between objects and entities

= Transparent persistence interface reflecting all of
INSERT, UPDATE, DELETE, SELECT

Generic approaches exist, most of which are

commercial

= TopLink, CMP (e.qg., Jboss), JDO, Tangram

get persistence adaptor factory for database
my $db = Bio::DB::BioDB->new(-database => ’biosql’,
-dbcontext => $dbc);

convert to persistent object

$pobj = $db->create_persistent($seq);
insert into datastore
$pobj->create();

e Vhere can | get Biop

Bioperl-db is a sub-project of Bioperl
» Links and news at http://www.bioperl.org/

= Email to bioperl-I@bioperl.org
but biosgl-l@open-bio.org will often work, too

= CVS repository is bioperl-db under bioperl
(/home/repository/bioperl/bioperl-db)

No release of the current codebase yet
= But v0.2 is imminent

Bioperl-db; K

Transparent persistence APl on top of object API

= Persistent objects know their primary keys, can
update, insert, and delete themselves
Full APl in Bio::DB::PersistentObjectl
= Peristent objects speak both the persistence API and
their native tongue
Several retrieval methods on the persistence
adaptor API:
= find_by_primary_key(), find_by_unique_key(),
find_by_query(), find_by_association()
= Full APl in Bio::DB::PersistenceAdaptorl

Bioperl-db: Key Features

Extensible framework separating object adaptor
logic from schema logic

= Central factory loads and instantiates a datastore-
specific adaptor factory at runtime.

= Adaptor factory loads and instantiates persistence
adaptor at runtime - no hard-coded adaptor names

= Queries are constructed in object space and
translated to SQL at run-time by schema driver

= Designed with adding bindings to other schemas
than BioSQL in mind (e.g., Chado, Ensembl,
MyBioSQL, ...)

xamples d;

SIOPeKI=AD:

Step 1: connect and obtain adaptor factory

use Bio::DB::Bi0oDB;
create the database-specific adaptor factory
(implements Bio::DB: :DBAdaptorI)

$db = Bio::DB::BioDB->new(-database =>"biosql”,
user, pwd, driver, host ..

-dbcontext => $dbc);

Bioperl-db: Examples (11

Step 2: depends on use case
= Load sequences:

use Bio::SeqlO;
open stream of objects parsed from flatfile
my $stream = Bio::SeqIO->new(-fh => *STDIN,
-format => ’genbank’);
while(my $seq = $stream->next_seq()) {
convert to persistent object

$pseq = $db->create_persistent($seq);

$pseq now implements Bio::DB::PersistentObjectI
in addition to what $seq implemented before

1nsert into datastore

$pseq->create();

Bioper-db: Examples Ul

Step 2: depends on use case
= Retrieve sequences by alternative key:

use Bio::Seq; use Bio::Seq::SegFactory;

set up Seq object as query template

$seq = Bio::Seg->new(-accession_number => “NM_000149”,
-namespace => “RefSeq”);

pass a factory to leave the template object untouched

$seqfact = Bio::Seq::SeqFactory->new(-type=>“Bio::Seq”);

obtain object adaptor to query (class name works too)

adaptors implement Bio::DB::PersistenceAdaptorl
$adp = $db->get_object_adaptor($seq);
execute query

$dbseq = $adp->find_by_unique_key(
$seq, -obj_factory => $seqfact);

warn $seq->accession_number(),
” not found in namespace RefSeq\n“ unless $dbseq;

Bioper-db: Examples UV,

Step 2: depends on use case
= Retrieve sequences by query:

use Bio::DB::Query::BioQuery;
set up query object as query template
$query = Bio::DB::Query::BioQuery->new(
-datacollections => [“Bio::Seq s”,
“Bio::Species=>Bi0::Seq sp”’],
-where => [“s.description like ‘%kinase%’”,
“sp.binomial = ?7]);
obtain object adaptor to query

$adp = $db->get_object_adaptor(“Bio::Seql”);

execute query

$gres = $adp->find_by_query($query, -name => “bosc03”,
-values => [“Homo sapiens”]);

loop over result set

whiTe(my $pseq = $qres->next_object()) {
print $pseq->accession_number,”\n”;

}

Bioper-db: Examples (V;

Step 2: depends on use case
= Retrieve sequence, add annotation, update in the db

use Bi1o::Seq; use Bio::SeqgFeature: :Generic;

retrieve the sequence object somehow ..

$adp = $db->get_object_adaptor(“Bio::Seql”);

$dbseq = $adp->find_by_unique_key(

Bio: :Seg->new(-accession_number => “NM_000149",

-namespace => “RefSeq”));

create a feature as new annotation

$feat = Bio::SeqgFeature: :Generic->new(
-primary_tag => “TFBS”,
-source_tag => “My Lab”,
-start=>23,-end=>27,-strand=>-1) ;

add new annotation to the sequence

$dbseg->add_SeqFeature($feat);

update 1n the database

$dbseq->store();

Bioperl-db: Examples (Via

g E; 4
"%ﬁmﬁmﬁﬁ%ﬁﬁ%ﬁmﬁmﬁﬁ%ﬁﬁ%ﬁmﬁmﬁﬁ%ﬁﬁ%ﬁmﬁmﬁmﬁmﬁmﬁmﬁmﬁmﬁmﬁmﬁmﬁmﬁmﬁw

B R R R R R R R R R R R R R R R e P R R R e

Extensibility: handle my own object by adding my
own adaptor. A) Custom sequence class

package MylLab: :Y2HSeq;
@ISA = gw(Bio::Seq);
sub get_interactors{
my $self = shift;
return @{$self->{'_interactors'}};

add_interactor{
my $self = shift;
push(@{$self->{'_interactors'}}, @);

remove_interactors{

my $self = shift;

my @Qarr = $self->get_interactors();
$self->{'_interactors'} = [];
return @Qarr;

Bioperl-dbs Examples (Vib,

Extensibility: handle my own object by adding my
own adaptor. B) Custom adaptor class

package Bio::DB::BioSQL: :Y2HSeqgAdaptor;
@ISA = gw(Bio::DB::B10oSQL: :SeqgAdaptor);
sub store_children{
my ($self,$obj) = @_;
call inherited method
$self->SUPER: :store_children(@_);
obtain persistent term object for the rel.ship type

my $term = Bio::0Ontology::Term->new(
-name => “interacts-with”,
-ontology => “Relationship Types”);
my $termadp = $self->db->get_object_adaptor($term);
my $reltype = $termadp->find_by_unique_key($term) or
$self->db->create_persistent($term)->create();
continued on the next page ..

Bioperl-dbs Examples (Vib,

Extensibility: handle my own object by adding my
own adaptor. B) Custom adaptor class (cont’d)

store the interacting sequences
foreach my $seq ($obj->get_interactors()) {
each i1nteractor needs to be persistent object
$seq = $self->db->create_persistent($seq)
unless $seg->isa("Bio::DB::PersistentObjectI");
each interactor also needs to have a primary key
$seq = $seq->adaptor->find_by_unique_key() or
$seg->create();

associate the interactor with this object
$seq->adaptor->add_association(
-objs => [$obj, $seq, $reltypel],
-contexts => [“object”,”subject”,undef]);

}

return 1; # done

load_seqgdatabase.pl (bioperl-db/scripts/biosqgl)
= Use for loading and updating bioentries and their
annotation

= Supports all Bio::SeqlO supported formats
genbank, embl, swiss, locuslink, fasta, gcg, ace, ...

= Supports all Bio::ClusterlO supported formats
Unigene
Many command line options

= For flexible handling of updates
--lookup, --noupdate, --remove, --mergeobjs

= For filtering and post-processing sequences
--seqfilter, --pipeline

load_ontology.pl (bioperl-db/scripts/biosql)
= Use for loading and updating ontologies and terms

= Supports all Bio::OntologylO supported formats
dagflat (incl. soflat, goflat), InterPro, simplehierarchy

= Tested for GO and SOFA

Many command-line options

= For handling updates and obsoleted terms

--lookup, --noupdate, --remove

--noobsolete, --updobsolete, --delobsolete, --mergeobijs
= For (re-)computing the transitive closure

--computetc

load_ncbi_taxonomy.pl (biosql-schema/scripts)

= Use for loading and updating the taxon tables with
the NCBI Taxonomy database

= Downloads the database from NCBI automatically if
desired

= Some options to configure and tune load and update

= Automatically updates the Nested Set values in the
taxon table

Current Status

BioSQL is stable and release-ready

= Imminent release of v1.0

= Well-documented ;-) , ER-diagram

= Supports MySQL, PostgreSQL, and Oracle

= Toolkit-independent script for populating taxa
Bioperl-db is stable but documentation is patchy
= Core APIs stable and documented, but no How-To’s
= All tests pass on all 3 RDBMS platforms

= Head revision wants Bioperl >= 1.2.2 (but for
RichSeql attributes you need Bioperl main trunk)

= Fuzzy locations get transformed to simple locations

BioSQL & Bioperl-db are used in production and at
multiple places

Persistence Adaptors for more object types
= Phenotypes (OMIM)
= Markers (SNPs, STSs, ...)

Increased support for lazy loading

= Features and annotations for a sequence (sequence
itself is already lazy-loaded)

Write adaptors for other applications to run off of
BioSQL

= Genome browsers: GBrowse, Apollo

= Ontology editors: DAG-edit

Plans Eer dihe Future (1)

Proof-of-Concept for interoperability

= Load through Bioperl/Bioperl-db, retrieve through
Biojava

Proof-of-Concept of the architecture’s flexibility

= Map to schemas different from BioSQL: Chado,
Ensembl

Summary.

BioSQL is a very flexible, ontology-driven, stable
relational schema to capture richly annotated
databank entries

BioSQL is supported as the persistent storage
across the Bio* projects

Bioper
Bioper

Bioper

-d
0
-d

0 is the object-relational mapping for
pjects to BioSQL

0 adds a transparent persistence APl on

top of all supported Bioperl objects

Presently supported areas of the object model are
sequences, features, annotations, clusters,
ontologies

