Using the SEAN package to find SNPs in cultivated tomato

Angela Baldo¹, Derek Huntley², Joanne Labate¹

¹USDA ARS Plant Genetic Resources Unit, Geneva NY USA

²Department of Computing, Imperial College, London, UK

Visual screening & lab work: Katie Timmer¹, Susan Sheffer¹
Primer3 Wrapper: Mike D’Amico¹
WHY?

• Germplasm Collection Management
• Relationships among accessions
• Identifying duplicates
• Association Mapping for Traits
• Population Genetics

→Low diversity between tomato varieties
(≈1 SNP per 7 KB)
150,000 publically available expressed tomato sequences

- E6203
- TA496, E6203
- TA496
- TA492
- Rio Grande
- Rio Grande x Money Maker
- Money Maker
- 70320
- 70620
- Ailsa Craig
- Evita
- L-179
- LA0490
- Rutgers
- Sweet
- Cherry
- VFN 8
- VFNT Cherry
- WVA 106
Wholesale SNP Discovery

NCBI Unigene Set
- Sequence similarity
- cDNA clone origin

Cluster, Align
- Phrap

Identify potential SNPs
- Modified Picoult-Newberg (1999)

Generate correct consensi and BLAST against Swissprot & mapped tomato markers

Visually Examine Alignments

Design Primers
- Primer3

SNP confirmed in more than one clone from the same cultivar
SNP not confirmed in more than one clone from same cultivar
73 Predictions Tested:

- 10 No Amplification
- 40 Observed = Expected Size
- 23 Observed > Expected Size
- 25 Prediction was wrong
- 10 Looks heterozygous
- 12 Poor Quality Sequence
- 1 Doesn't match consensus
- 3 Too Large to sequence
- 11 Confirmed
- 1 Unexpected SNP

50-1300 BP Introns? ~ 1 per 1066 BP tested

(Six times better than random) - if you only count the useful ones!
Resources
(Everything GPL)

ISMB Poster A-9
SEAN
/perl & java available now:
 http://zebrafish.doc.ic.ac.uk/SEAN

PGRU Website
/perl wrappers available soon:
 http://www.ars-grin.gov/gen