REMBRANDT: Building a robust translational research framework for brain tumor studies

REpository of Molecular BRAin Neoplasia DaTa

Himanso Sahni
Center for Bioinformatics, NCI
SAIC
Debilitating Brain Tumors
Poor Survival Rates
Median survival for GBM patients < 1 yr
Let's Just do it
Challenges

- Few therapeutic advances in the last 3 decades
- Histopathological classifications for the heterogeneous group of tumors known as gliomas are broad and do not predict for therapeutic outcome or prognosis
- Standard therapies generally have minimal effect on long term survival

What can we do to help?
Rembrandt Knowledgebase

Understanding Cancer

Biomedical Data
- Genomic Sequences/SNP
- Comparative Genomics
- Gene Expression
- Proteomics
- Cellular Pathways
- Clinical Data
- Tissues/Samples

Data Integration

Expression array data
Clinical data
SNPArray data
Proteomics data

Better understanding
Better treatments

Concept → Creation

NCICB

Rembrandt
NCI’s GMDI Study

- Blood
- Tumor
- Plasma

- DNA
- RNA
- Tumor Core Punch
- Proteins
Typical Rembrandt Usage Scenario

- In brain tissue from patients diagnosed with the glioblastoma multiforme (GBM) subtype of Astrocytoma, which genes in the EGF signaling pathway are over or under expressed in cancerous versus normal tissue?

- Is there a correlation between the expression and genomic (copy number) data collected from these patients?

- How did EGFR up-regulation affect survival of patients within this study?

- Of these groups of samples, which ones were obtained from patients that were males and were diagnosed between the ages of 25 and 40 yrs?
Rembrandt’s Objectives

Must support translation research use cases:

- Build an infrastructure that provides users with the ability to create complex translational queries
- For Example:
 - Ability to AND/OR a Gene Expression query with a Copy Number query and then further nest this within a Clinical Results Query
 - Ability to further refine the results by applying a criteria to the subset of samples grouped by high order analysis
 - Ability to apply filters to the result set for user friendly analysis.
Rembrandt’s Objectives (cont’d)

- Allow users to view the results by easily pivoting between the various dimensions:
 - Grouped by Disease
 - Grouped by Patient / Sample
 - Grouped by Genes for Gene Expression or Cytogenic Location for Copy Number
 - View Associated Annotations
 - Time Course View (future)
Gene Expression Search Use cases

- Search RBT Affy Gene Expression Dataset
- Search differential gene expression by Gene Name
- Search differential gene expression by fold change
- Search differential gene expression by chromosomal region
- Obtain gene information from cytoband location
- Obtain cytoband location from gene name
- Search differential gene expression by Probeset ID
- Search differential gene expression by GO Terms
- Search differential gene expression by Pathway name
- Calculate fold change
- Get Genes
Rembrandt’s caBIG objectives

- Aligns with NCI’s caBIG (cancer Biomedical Informatics Grid) principles:
 - Open source
 - Open access
 - Syntactic and Semantic interoperability
 - Federated access

- Leverage NCICB and caBIG Infrastructure Components
 - caCORE Infrastructure (caBIO, EVS, caDSR)
 - caARRAY gene expression data repositories and analysis tools
 - C3D Clinical Informatics System
 - caBIG Infrastructure being delivered by caBIG workspaces

See https://cabig.nci.nih.gov/
Rembrandt Technical Objectives

- Build a scalable high performance application
 - Tiered Architecture
 - Abstraction / Model View Controller
- Support Strong Type Checking & Validations
- “Fast” Queries
- User Friendly Interface
- Groundwork for a robust translational research framework
Rembrandt Current Architecture

Extract Transfer Load Processes

Middle Tier
- Query Builder
- Report Builder
- Cache Manager
- Query Processing
- Object Relational Mapping
- Run Time Analysis Components (Future)

User Interface
- Complex Query Builder
- Tabular Reports
- Graphical Plots

- Other Annotations
- caBIO
- MicroArray
- SNPArray

Other Annotations

Clinical

caIntegrator
Another Architecture Perspective

- JSPs
- Servlets
- Struts
- Query Processor
- Result Set Processor
- Cache Manager (EHCACHE)
- Apache’s Object Relational Bridge (OBJ)
- Rembrandt Study Data Warehouse (Star Schema)
Query & Retrieval Objects:
Support Strong Type Checking & Validations

- Such as Query, View, Criteria, Domain Element objects
 - Abstracts presentation logic from the query helper objects
 - Provides the ability to nest cross domain queries (AND/OR)
 - Is strongly typed
 - Can validate itself
Example: Criteria Objects

Criteria Object
- Consist of DomainElements
- Provide Generic Cross Domain Filters
- Each Criteria can validate itself
- For e.g.: RegionCriteria
 - Consists of ChromosomeNumberDE, CytobandDE, BasePairPositionDEs for start & end positions.
 - Is used in both Gene Expression and Comparative Genomic domain queries
Agnostication can result in Obfuscation…

- **Challenge**: Making Rembrandt dB agnostic using a standard Object Relational Mapping (ORM) layer AND still create high performance queries.
 - Currently using Apache’s Object Relational Bridge (OJB) as the ORM layer. (http://db.apache.org/ojb/)
 - All ORMs provide great abstraction but may not help produce the most efficient SQL.
 - Custom implementations or extending frameworks can become a maintenance nightmare.
High Performance Query Processing

- **Multi-threaded Query Processing:**
 - All queries are constructed and executed in parallel on separate threads from Java server side

- **Dimensional Result Set Processing**
 - All result set dimensions are reconstituted in Java server side

- **For example:**
 - The entire Chromosome 7 (1 and 15854551 bp)
 - Able to retrieve about 51,000 fact records plus all associated annotations and display results for all 51 samples in 20 sec.
Multi-threaded Query Processing in Java

```java
QueryHandler = getQueryHandler()
ResultSet = handle(query)
SelectHandler(reporterIDCriteria, allProbIDs, allCloneIDs, event)
run()
ArrayList = getMultipleProbeIDSubqueries()
executeSubqueries(probQueries, probIDSet)
ArrayList = getMultipleProbeIDSubqueries()
executeSubqueries(probQueries, probIDSet)
Class = getGeneIDClassName(geneIDCriteria)
ArrayList = getGeneIDValues(geneIDCriteria)
ResultSet = executeSampleQuery(allProbIDs, allCloneIDs, query)
```
Rembrandt Data Warehouse Schema

- Highly de-normalized, query optimized star schema
 - The Fact tables contain all the pre-calculated data points based on various scientific algorithms.
 - The dimension tables contain study relevant data points, such as clinical information, genomic annotation information, etc.
 - Lookup tables and mapping tables provide static general information, such as gender, etc.
Rembrandt Data Warehouse Schema

Dimensions
(PROBESET_DIM, CLONE_DIM, DISEASE_DIM, etc)

Fact Tables
DIFFERENTIAL_GENE_SFACT, DIFFERENTIAL_GENE_GFACT, ARRAY_GENO_ABN_FACT

Lookup/Mapping Tables
Caching Strategy

- **Challenge:** Provide the ability for users to quickly view reports in a different dimension and easily retrieve previously executed reports
 - Executed reports are cached for each user session
 - Provides performance and scalability
 - Using EHCHACHE (http://ehcache.sourceforge.net/)
Report Transformation Using XSLT

Challenge: User friendly reports

- Generate XML from Result set Objects using Dom4J (http://www.dom4j.org)
- Apply XSLT to render the reports
- Allows us to provide the users with ability to
 - Filter/ Highlight data
 - Sorting of results
 - Pagination
 - CSV Generation
 - XML Import/Export
 - Multiple “Styled” views per study
 - XHTML compliance
 - Browser Compatibility (various styles based on user agent)
- XSLT uses XPath to define the matching patterns for transformations
Groundwork for a robust translational research framework

- **Challenge**: Lay the foundation for a clinical genomic framework that...
 - Integrates Clinical data with Experimental data
 - Provide researchers with the ability to perform complex ad hoc querying, real time analysis and reporting across multiple domains.
 - Generic enough to support other similar clinical genomic studies such as I-SPY
Other similar studies …
I-SPY Trial

Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging And molecular analysis

Courtesy: Laura Esserman, Director, UCSF CF Buck Breast Care Center
Goals for future releases...

- caBIG Silver Level compliance
 - Clinical Genomic Object Model
 - Domain-based Clinical Genomic Object API
- Gateway Portal that provides links to other NCICB/caBIG transaction systems for study based data submission
Goals for future releases…(cont’d)

- Package a suite of utilities that can be applied to other similar translational projects
 - Database creation utilities
 - Data retrieval utilities
 - Transformation/Pre-processing utilities
 - Data loading utilities
 - Higher-order analysis components
 - Visualization components
NCICB Development team
- Dave Bauer
- Ram Bhattaru
- Alex Jiang
- Ryan Landy
- James Luo
- Ying Long
- Subha Madhavan
- Kevin Rosso
- Himanso Sahni
- Prashant Shah
- Nick Xiao
- Dana Zhang

NCICB Advising team
- Scott Gustafson
- Sharon Settnek
- Carl Schaefer
- Mervi Heiskanen
- Sue Dubman
- Peter Covitz
- Ken Buetow

NOB/CCR/NCI
- Howard Fine
- JC Zenklusen
- Yuri Kotliarov
- Tracy Lively

NINDS
- Bob Finkelstein

UCSF
- Laura Esserman

Contact Information:
- Application: http://rembrandt-db.nci.nih.gov
- Project: http://rembrandt.nci.nih.gov
- Project Manager: madhavas@mail.nih.gov
- My Email: sahnih@mail.nih.gov
A more in-depth demonstration of the application will be presented by Subha Madhavan Tuesday, June 28th 3.00 PM to 4.00 PM at Lasalle conference room.

Application: http://rembrandt-db.nci.nih.gov
Informational Site: http://rembrandt.nci.nih.gov